A penalized likelihood approach to model the annual maximum flow with small sample sizes
نویسندگان
چکیده
منابع مشابه
A Penalized Maximum Likelihood Approach to Sparse Factor Analysis
Factor analysis is a popular multivariate analysis method which is used to describe observed variables as linear combinations of hidden factors. In applications one usually needs to rotate the estimated factor loading matrix in order to obtain a more understandable model. In this article, an l1 penalization method is introduced for performing sparse factor analysis in which factor loadings natu...
متن کاملA Penalized Nonparametric Maximum Likelihood Approach to Species Richness Estimation
We propose a class of penalized nonparametric maximum likelihood estimators (NPMLEs) for the species richness problem. We use a penalty term on the likelihood because likelihood estimators that lack it have an extreme instability problem. The estimators are constructed using a conditional likelihood that is simpler than the full likelihood. We show that the full-likelihood NPMLE solution given ...
متن کاملMaximum likelihood, profile likelihood, and penalized likelihood: a primer.
The method of maximum likelihood is widely used in epidemiology, yet many epidemiologists receive little or no education in the conceptual underpinnings of the approach. Here we provide a primer on maximum likelihood and some important extensions which have proven useful in epidemiologic research, and which reveal connections between maximum likelihood and Bayesian methods. For a given data set...
متن کاملMaximum penalized likelihood estimation in a gamma-frailty model.
The shared frailty models allow for unobserved heterogeneity or for statistical dependence between observed survival data. The most commonly used estimation procedure in frailty models is the EM algorithm, but this approach yields a discrete estimator of the distribution and consequently does not allow direct estimation of the hazard function. We show how maximum penalized likelihood estimation...
متن کاملPenalized maximum likelihood for multivariate Gaussian mixture
In this paper, we first consider the parameter estimation of a multivariate random process distribution using multivariate Gaussian mixture law. The labels of the mixture are allowed to have a general probability law which gives the possibility to modelize a temporal structure of the process under study. We generalize the case of univariate Gaussian mixture in [1] to show that the likelihood is...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Malaysian Journal of Fundamental and Applied Sciences
سال: 2017
ISSN: 2289-599X,2289-5981
DOI: 10.11113/mjfas.v0n0.620